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Abstract

We give examples of irreducible modules over the second complex Weyl algebra 4> whose
dual is GK-critical but not irreducible. These modules are then used in the construction of critical
modulcs of length 2 over 42, (© 1998 Elsevier Science B.V. All rights reserved.

AMS Clussification: Primary 16S32; secondary 16E30; 16160

1. Introduction

In the representation theory of algebras, the role of atom is played by the irreducible
(or simple) modules. This notion has a neat generalization in the concept of criticul
module. Suppose that R is a complex algebra. A finitely generated left R-module M
is GK-crirical if all proper quotients of M have smaller Gelfand—Kirillov dimension
than M. The relation with irreducible modules becomes apparent if one uses quotient
categories; see [6] for more details.

In 1985 Tauvel asked whether a GK-critical module of finite length over a solvable
I.ie algebra is necessarily irreducible. This question was answered in the negative by
Perets in [9]. Perets used Stafford’s example of an irreducible non-holonomic module
to construct a GK-critical modulc of length 2 over the Weyl algebra A, for n > 2.
That this example has the required properties is checked by direct computation in the
style of Stafford’s original example in [10].

In the introduction to his paper, Perets says that, in principle, one could show that
these modules exist using Ext groups. This may seem unlikely at first, because there
is no good duality thcory for non-holonomic modules. In this paper we show that the
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existence of GK-criticals of length 2 is, in fact, a consequence of the subtle ways
in which the dual of a non-holonomic module misbehaves. The main point is that
there exist non-holonomic irreducible modules whose dual is well defined but is not
irreducible. These will be constructed in Section 2.

2. Irreducible modules

Throughout the paper A will stand for the second complex Weyl algebra. This is
the ring of differential operators ot two-dimensional affine space. It is generated over
C by the coordinate functions x;..v, and by their partial differential operators, denoted
by f|,52.

Let M be a finitely generated left 4-module. Suppose that Ext/(M,4) =0 whenever
j#k, then

Ext*(Ext*(M.4)) = M.

This suggests that the dual of M should be Ext*(A.4). But this is a right A-module.
Since it is more convenient to work always with left 4-modules, we will use an
anti-automorphism to turn the right action of 4 into a left action. The standard trans-
position, denoted by 7, is the anti-automorphism defined in multi-index notation by
(x*0Fy = (= )IFlefx”, where o, f& N, If N is a right module, its transposed is the
left module NT where au = ut(a), tor a € 4 and u & M. For more details sce [5, Section
2, Ch. 16]. Thus, if Ext/(M.4)=0 for j#k. the dual of M is M* =Extf(M,A4)".

Two special cases are well known. If £ =0 the condition on Ext is equivalent to
saying that M is projective. In this case, the dual defined above is the usual one, with
the action transposed to the left. On the other hand, it follows by Bernstein’s inequality
[5, Section 4, Ch. 9] that a finitely generated 4-module cannot have Geltand—Kirillov
dimension less than 2. Since A4 satisfies the Auslander condition [3, Section 2, Ch. V],
the largest value of k for which the condition on Ext makes sense is 2. Indeed
Ext/(M,A)=0 for j#2 if, and only if, M has Gelfand—Kirillov dimension 2. The
modules that satisfy these equivalent conditions are called holononiic.

Since we are interested in non-holonomic modules, we must see what happens when
k=1. Let ¢ be a non-zero element of A4 and sct M =A4/Aa. Since M has a free
resolution of length 1, it follows that Ext/(M,4)=0 if j# 1. Moreover, a simple
calculation shows that A has dual 3 * = A/A71(«). The main result of this section is
that there exist irreducible modules of the form A/4¢ whose dual is rot irreducible.

Let p€ C? and let d be a derivation of C[x|,x;]. Denote by m the maximal ideal of
Clx),x2] corresponding to p under the Nullstellensatz. If p is a singularity of d then
m is invariant under d. The l-jer of d at p is the linear operator of m/m?* induced
by d. Let d =g,y + g272. Denote by J; the transpose of the Jacobian matrix of the
map of C? to itself with coordinate functions (gi.y2). If p={(2,%) then the images
of x; — 2y and x2 — % form a basis of m/m”. The matrix of the [-jet of d at p in this
basis is equal to Jy( p).
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Suppose that the 1-jet of 4 at p has eigenvalues 4, and 4,. We will denote by
P p) the lattice Z 4 + Z 4. The positive cone £ *(p) of this lattice is the set {a’| +
bl3: a, b are positive integers}.

Lemma 2.1. Le¢t d be a derivation and let | be a polynomial in Clx,,x;]. Let J be
a left ideal of A. Assume that, for some point p < C?,

(1) p is a singular point of d;

(2) the eigenvalues of the 1-jet of d at p are distinet,

(3)d+ fe;

(4) A/J is an irreducible module supported at p.
Then f(p)e LT(p).

Proof. Let /; and /; be the eigenvalues of J,( p). By translating p, we can assume
that it is the origin. Moreover, since 4) 7 /5, it follows that the matrix J,( p) is diag-
onalizable. Thus, a linear change of varables allows us to write d in the form

d={(g1 + A1x1)01 + (g2 + 72x2)Ca,

where ¢y and ¢, have degree > 2. Both the translation and the linear change of variables
induce automorphisms in 4 which preserve Clx|,xz]; see [5, Section 3, Ch. 1]. Note
that hypotheses (1) to (4) are not affected by these automorphisms. Thus, without loss
of generality, we can assume that p is the origin and that ¢ has the form above.

Since A4/J is irreducible and supported at the origin, it follows from Kashiwara's
equivalence that 4/J 1s isomorphic to C[d, ], the vector space generated by the
monomials on ¢; and ¢, with the natural actions. For details see {5, Section 3, Ch. 18].

Let H(m) be the vector subspace of C[}, ;] generated by the monomials of degree
< m. A calculation shows that if » + s =m, then

de[o)y= —[Ar+ 1)+ L2(s + 1]670;  (mod H(m — 1)).

In particular, d- H{(m)C H(m). Let u be the image of | +J in C[é, ;] under the
above isomorphism, and assume that « has degree m. Since (d + [ )1 +J)=0 we
conclude that

du= — f(Ou (mod H(m — 1)). (2.2)
But « has degree m as a polynomial in ¢, and ¢, thus

u= Z %501 03 (mod H(m — 1)).
Hence,

du= — Z G [20(F + 1) + 2o(s + 1D]E1S (mod H(m — 1)).

The set {@é5: r + s=m} is a basis of H(m)/H(m — 1). Thus from (2.2), f(0)=
(r + 1)41 + (s + 1)42 whenever 2,, is non-zero. Since r,s are non-negative integers,
(e rt0). O
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This will be used to prove the following theorem, which is a slightly modified version
of [1, Section 4, Proposition 6]. We assume that 4 is endowed with its filtration by
order. Thus, the characteristic variety of an A-module refers to the variety calculated
using this filtration. For more details see [5, Chs. 7-11] or [3, Ch. V].

Theorem 2.3. Let d be a derivation, and [ a polvnomial, of Clxi,x32]. Denote by
{p1,.... pu} the singular points of d in C 2 Suppose that

(1) n>2;

(2) the eigenvalues of the 1-jet of d at p; are distinct for 1 <i < g,

(3) d is not tangent to any alyebraic curve of C?;

@) f(p)E L

(5) flp) ¢ L (p)for2<i<n
Then M =A/A(d + [) is irreducible. Moreover, if 0¢ £*(p,) for some r>2 and
F(p)=0 then M* is GK-critical, but not irreducible.

Proof. The proof is essentially the same as that of [1, Section 4, Proposition 6]. It is
not necessary to repeat it in detail, but we will sketch it in order to point out where
it must be modified, because the hypotheses on f above are weaker than the ones in
[1, Section 4, Proposition 6]. The proot can be divided into three parts:

(1) It is shown that a proper homomorphic image A of M must be holonomic, no
matter which f is chosen. This is where condition (3) is used. We conclude from this
part that if H is irreducible then its characteristic variety is either the zero section of
the cotangent bundle T*C? or a fibre of this bundle.

(2) In this part we must show that / cannot have the zero section as its characteristic
variety. This is where condition (4) is used. Note that for the proof of [ 1, Section 4,
Proposition 6] to work it is enough to assume that this condition holds for only one
singular point of d.

(3) We are left with only one possibility for the characteristic variety of H, namely,
a fibre of T*C? over a point ¢ of C?. We must check that this cannot happen, since
condition (5) is weaker than the hypothesis of [I, Section 4, Proposition 6]. Note
that ¢ must be stable under d; so it has to be a singular point of d. Hence, H is
supported at one of the points py,..., p,. But by Lemma 2.1 this is possible only if
f(pi)e LT (p;), which is excluded by (4) and (5).

Thus, M has no non-trivial quotients, from which we deduce that it is irreducible.
We still have to consider what happens to the dual of M, under the assumption
that 0¢ £ (p,) and f(p,)=0 for some r>2. As we saw above, the dual of M
is M*=A4/4(d" + f). Write m, for thc maximal ideal that corresponds to p,. If
d=¢,¢, + ¢202 then we have that

d+f=—(- g1 +02-gp)+ f €Am,

because f(p,)=0. Thus M* has 4/4m, as a homomorphic image. In particular, M
has a holonomic quotient module. On the other hand,

d*+ f= —(d+ () = /) (2.4)
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where tr(J;) is the trace of the matrix J;. Now applying the first part of the proof to
M*, we conclude that its proper quotients must have Gelfand—Kirillov dimension 2.
Since M* itself has Gelfand-Kirillov dimension 3 we have proved that it is GK-critical.

O

Let us now consider what happens to the dual of M if we assume that f satisfies
the stronger hypothesis of [1, Section 4, Proposition 6]. We shall retain the notation
of Theorem 2.3 for the rest of this section.

Scholium 2.5. If f(p;)¢ L (p;) for 1 <i<n then M* is irreducible.
Proof. From (2.4)
M* = A/A(d + te(Jy) = f).

Since trJy(pi) € L(p;) but f(pi)¢ L(pi), it follows that (rdy, — ) pi) ¢ L (pi).
Thus, we can apply Theorem 2.3 to M* and deduce that it is irreducible. Note that we
must assume that f(p;) does not belong to the whole lattice .#( p;), and not just the
positive cone, because we go from f to —f when we pass from M to its dual. O

Up till now, we have given no examples of derivations satisfying all these condi-
tions. Let us now consider this question. The examples of [1, Section 4] are generic
derivations; we will turn instead to singular foliations of projective space as a source
of examples.

Let zy.z,,z2 be homogeneous coordinates in the complex projective space P2. Iden-
tify the affine open set zp #0 with C? and put x;=z;/z for i=1,2. A derivation
¢g1C1 + ¢g2¢7 of Clx|,x2] can be associated to a l-form ¢.dx; — ¢ dx; in a canon-
ical way. We will assume that the polynomials g, and g¢> are co-prime and that
k =max{deg gi,deg g2}. The pull back of this form to C*\{0} can be written in the
form o= ZgA,- dz;, where the 4; are homogeneous polynomials of degree & + 1 and
ZS z;4; =0. Such a 1-form determines a singular foliation of P~

Suppose that p< C? is a singular point of w. Hence, p is a singular point of 4.
If the ratio of the eigenvalues of the 1-jet of d at p is not a positive real number then
p is a singularity of Poincaré tvpe of w. A Poincaré foliation is one all of whose
singular points are of Poincaré type. If w is Poincaré then its degree is k.

Let V; be the set formed by triples (4;,43.43) of homogeneous polynomials of
degree & + 1 such that ZS z;4; is identically zero. Two such triples which differ by
multiplication by a non-zero scalar define the same foliation in P?. This suggests that
we look at the projective space P(V;). Let A >2 be a positive integer. It can be
proved that the set .«7; of Poincaré foliations of degree k in P? that do not leave any
algebraic curve invariant is an open and dense subset of P(¥;) in the analytic topology.
See [8, Theorem B; 4, Section 4] for details.

Thus, if a derivation d of C[x;,x;] gives rise to a Poincaré foliation, it has no
invariant algebraic curves. Two other conditions of Theorem 2.3 are automatically
satisfied in this case. First, the eigenvalues of the 1-jet of d at any singular point must
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be non-zero and distinct, which follows from the definition of a Poincaré foliation.
Moreover, if a foliation is Poincaré then it must have exactly k% + k + 1 singularities
by [8, Section 3, Lemma 4]. Some of these can be at the line at infinity. But by
Bézout’s theorem, the number of points of intersection of the line at infinity with the
curve Ag =0 cannot exceed & + 1. Thus, « has at least k2 singular points in C?. Since
k >2, it follows that 4 has at least 4 singular points.

An example of a foliation that satisfies all these requirements was given by Jouanolou
in [7, p. 157]. This foliation is defined on the affine open set z; # 0 by the derivation

A= —xx5)a; + (xF —x3he,. (2.6)

An easy calculation shows that 4 has £ + & + | singular points in C* and that the
ratio of the eigenvalues of the 1-jets of ¢ at each of these points is not a real number.
For more details about this example, and for a proof that its foliation belongs to ./,
see [8, Section 3.2; 4, Section 4; 7, p. 15711].

Note also that it is easy to construct a polynomial f that satisfies hypotheses (4)
and (5) of Theorem 2.3. For 2 <i<wn, let ¢; denote a linear polynomial such that
¢:i(pi)=0 but ¢,(p)#£0. Let « be a complex number linearly independent over Q
with the eigenvalues of the 1-jet of ¢ at p,. Then

ﬂf)z e qbu
= 2.7
= 5o o) 27

satisfles f(p;)=2o and f(p;)=0, for ;>2. Using the Jouanolou example and this
polynomial, we can give a more concrete version of Theorem 2.3.

Corollary 2.8. Let k>2 and n=4k* + k + 1. Suppose that
(1) A4 is the derivation defined in (2.6) and p,...., p, are its singular points;
(2) [ is the polynomial defined in (2.7).
Then M = AJA(A+ 1) is irreducible. Moreover, M* is GK-critical, but not irreducible.

Proof. This is a consequence of Theorem 2.3, and the properties of 4 and f described
above. Note that 0¢ ¥ (p;), for 1 <i<a, since the ratio of the eigenvalues of the
1-jet of A at each singular point is not a real number. O

3. Critical modules

We will now apply Theorem 2.3 to show that there exist critical modules of length
2 over A. First we need a lemma.

Lemma 3.1. Let M be a finitely generated A-module such that Ext/(M,4)=0 if j#1
and let N be a holonomic A-module. Then

Ext'(N, M )= Hom(M*,N*).
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Proof. We will use the following result: suppose that {/ and V are left 4-modules
such that Ext*(U.4)=0, whencver s # j, then

Ext/ (U, VY= Tor (Ext/(U,4), V) (3.2)

for all 0 <¢<j. This is proved in [2, Ch. 2, Proposition 4.12]. Since N is holonomic,
it follows from (3.2) that

Ext'(N.M)=Tor (Ext*(N.4).M).
But
Tor (Ext*(N.4). M)2=Tor (M*.N*).

Since M satisfies Ext/(M,4)=0 for j# 1 and M* = Ext'(M*.4), the desired result is
obtained from another application of (3.2). I

We can now state the main result of this paper. As in Section 2 we will denote the
maximal ideal of C[x,.x,] that corresponds to the point p; of C* by m;.

Theorem 3.3. Let d be a devivation and | a polvnomial of C[xy.x2]. Denote by
{pr.....py} the singular points of d in C 2 Suppose that

1)y n>2;

(2) the cigenvalues of the 1-jet of d at p; are lincarly independent over Q for
1 <i<un:

(3) d is not tangent to anyv algebraic curve of C?;

(4) f(pEL(pr)

(5) f(p)=0 for some 2 <r<n.
Then Ext'(4/A(d + f).4/Am,) # 0.

Proof. Note that in (2) we now require the eigenvalues to be linearly independent
over 0. This guarantees that 0 € ¢ ( p,.). Together with (5), this allows us to conclude
from Theorem 2.3 that 4/4m, is a quotient of M*. Note that the dual of 4/4dm, is
irreducible and supported at p,. Thus, 4/4m, is isomorphic to its dual. The result now
follows by Lemma 3.1. O

The Jouanolou example 4 of Section 2 satisfies all the hypothesis above. Actually
the hypothesis (2) holds generically in the space of foliations P(}} ). Since the Poincaré
foliations that have no invariant curve form an open and dense subset of this space, we
are assured of an abundance of derivations satisfying all the hypothesis of Theorem 3.3.
Moreover, as we have also seen in Section 2. it i1s easy to construct a polynomial f
that satisfies hypotheses (4) and (5). Thus critical A-modules of length 2 do exist.
Building on this approach we can actually construct an explicit example.
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Corollary 3.4. Let d and [ be as in Theorem 3.3, and put M = A/A(d + ). Let N he
a submodule of M™* such that M*/N is irreducible. Then N* is a critical module of
length 2 over A.

Proof. Write H =M*/N. Since M* is GK-critical, H is holonomic and the sequence
0—-N->M">H-—-( (3.5)

is non-split exact. Moreover, N must be GK-critical of dimension 3. From the explicit
characterization of M* obtained in Scction 2, we conclude that Ext/(M*, 4)=0if j £ 1.
Since H is holonomic, it satisfies Ext/(H,4) =0 whenever j #2. Using these two facts
and the long exact sequence of Ext groups, we obtain the following exact sequence of
right A-modules

0— Ext'(M* A4)— Ext'(N.4) -+ Ext’(H,4) — 0,

and also the fact that Ext/(N,4) =0 for j #1.
From the explicit description of M it is easy to see that (M*)* =M. Thus, by
transposing the actions, one obtains an exact sequence of left 4-modules

0—-M >N H*—0, (3.6)

where H* denotes the dual in the holonomic category. Since H is irreducible, so is H*.
But M is irreducible, hence N* has length 2.

If j#1 then Ext/(N,4)=0, and so Ext/(N*,4)=0. This implies that (3.6) does
not split. Indeed, from N* = H* 4: M it follows that

0=Ext>(N*, 4 = H,

which is a contradiction. Thus (3.6) is non-split. But this implies that if S is a non-zero
submodule of N* then SN M # 0. Since M is irreducible we have M C §. In particular,
N* is a critical module, as required. 0

Note that if the singular point p, of Theorem 3.3 has coordinates (2,,2;), then

; Axy —o21) + A — o)
 Ad ey — f)
This gives a fairly explicit description of the critical module of length 2.

Finally, note that it is not clear whether these results can be extended to the nth
Weyl algebra A4,, when n>3. The fact that we are working over the second Weyl
algebra is used several times in the paper; especially in Lemma 3.1 and the first part
of the proof of Theorem 2.3. It is not clear how to get around these difficulties.
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